

AN065

AN065 Getting Started with the KXTJ3

36 Thornwood Dr. — Ithaca, NY 14850 USA

Tel: 607-257-1080 — Fax: 607-257-1146
www.kionix.com — info@kionix.com

© Kionix 2017 All Rights Reserved
10 November 2017

Page 1 of 8

Introduction

This application note will help developers quickly implement proof-of-concept designs
using the KXTJ3 tri-axis accelerometers. Please refer to the KXTJ3 data sheet for
additional implementation guidelines. While Kionix strives to ensure that our
accelerometers will meet design expectations by default, it is not possible to provide
default settings to work in every environment. Depending on the intended application, it is
very likely that some customization will be required in order to optimize performance. We
hope the information provided here will help the developer get the most out of the KXTJ3.

Circuit Schematic

This section shows recommended wiring for the KXTJ3, based on proven operation of the
part. Specific applications may require modifications from these recommendations. Please
refer to the KXTJ3 Data Sheet for all pin descriptions.

Figure 1: KXTJ3 Application Schematic

http://www.kionix.com/
mailto:info@kionix.com

AN065

© Kionix 2017 All Rights Reserved

10 November 2017

Page 2 of 8

Quick Start Implementation

Here we present several basic ways to initialize the part’s accelerometer and gyroscope.
These can vary based on desired operation, but generally the initial operations a
developer wants to do are: 1) read back acceleration data asynchronously, 2) read back
acceleration data when next data set is ready via interrupt, 3) wake-up detection. These
cursory solutions are provided as a means for configuring the part to a known operational
state. Note that these conditions just provide a starting point, and the values may vary as
developers refine their application requirements.

1. Asynchronous Read Back Acceleration Data

This example enables the accelerometer to start outputting sensor data that can
be read from the output registers.

a) Write 0x00 (Reset Value) to Control Register 1 (CTRL_REG1) to set the

accelerometer in disabled mode (this step must be taken prior to making any
register changes).

Register Name Address Value

CTRL_REG1 0x1B 0x00

b) Write 0xC0 to Control Register 1 (CNTRL_REG1) to assert PC1 (Power

Control bit), set the G-range to +/-2g, and set the resolution to 12 bits.

Register Name Address Value

CTRL_REG1 0x1B 0xC0

c) Acceleration data can now be read asynchronously from the XOUT_L,

XOUT_H, YOUT_L, YOUT_H, ZOUT_L, and ZOUT_H registers in 2’s
complement format.

2. Synchronous Hardware Interrupt Read Back Acceleration Data

This example configures the accelerometer to start outputting sensor data
synchronously with the data ready interrupt on the physical interrupt pin (INT).
When data is ready, data can be read from the output registers.

a) Write 0x00 (Reset Value) to Control Register 1 (CTRL_REG1) to set the

accelerometer in disabled mode (this step must be taken prior to making any
register changes).

Register Name Address Value

CTRL_REG1 0x1B 0x00

AN065

© Kionix 2017 All Rights Reserved

10 November 2017

Page 3 of 8

b) Read from the Interrupt Latch Release Register (INT_REL) to clear any
outstanding interrupts. The actual read value can be ignored.

Register Name Address Value

INT_REL 0x1A n/a

c) Write 0x30 to Interrupt Control Register 1 (INT_CTRL_REG1) to configure the

hardware interrupt. For this example, we will enable the physical interrupt pin
7 [IEN[5]=1], set the polarity to active high [IEA[4]=1], and latch until it is
cleared by reading INT_REL (0x1A) [IEL[3]=0].

Register Name Address Value

INT_CTRL_REG1 0x1E 0x30

d) Write 0xE0 to Control Register 1 (CNTRL_REG1) to assert PC1 (Power

Control bit), set the G-range to ±2g, set the resolution to 12 bits, and enable
reporting of the availability of new acceleration data as an interrupt (DRDYE).

Register Name Address Value

CTRL_REG1 0x1B 0xE0

e) Acceleration data can now be read synchronously (when INT becomes active)

from the XOUT_L, XOUT_H, YOUT_L, YOUT_H, ZOUT_L, and ZOUT_H
registers in 2’s complement format. The interrupt can be verified by reading the
STATUS_REG register (INT[4]=1). The source can be verified by reading the
INT_SOURCE1 register (DRDY[4]=1).

3. Activate Wake-Up Function

This example configures the sensor to utilize the embedded Wake-up from Sleep
feature and configured to generate the interrupt on INT pin. The interrupt engine
can be configured by the user to report when qualified changes detected by the
acceleration occur, using the accelerometer. Optionally, the user has the ability
to enable/disable specific accelerometer axes and specific directions, as well as
to specify the delay time. An example use cause for the engine would be to
detect motion on any axis to signal an event to wake up other device or system.

a) Write 0x00 (Reset Value) to Control Register 1 (CTRL_REG1) to set the

accelerometer in disabled mode (this step must be taken prior to making any
register changes).

Register Name Address Value

CTRL_REG1 0x1B 0x00

b) Read from the Interrupt Latch Release Register (INT_REL) to clear any

outstanding interrupts.

Register Name Address Value

INT_REL 0x1A n/a

AN065

© Kionix 2017 All Rights Reserved

10 November 2017

Page 4 of 8

c) Write 0x07 to Control Register 2 (CTRL_REG2) to set the ODR (Output Data

Rate) for the wake up function to 100 Hz.

Register Name Address Value

CTRL_REG2 0x1D 0x07

d) Write 0x0A to Wake-Up Timer Register (WAKEUP_COUNTER) to set the

amount of time a motion must be present (100 msec) before a wake up is
triggered. Here was assume that any axis or direction can trigger a wake up
interrupt (INT_CTRL_REG2 is set to default).

Register Name Address Value

WAKEUP_ COUNTER 0x29 0x0A

e) Write 0x08 to Wakeup Threshold Register (WAKEUP_THRESHOLD) to set the

motion threshold to 0.5 g.

Note: For the KXTJ3, the equation for WAKEUP_THRESHOLD (counts) =
Desired Threshold (g) x 256 (counts/g). If 0.5g is the desired threshold, the
value would be 128 (0x80). Since the threshold value spans across 2 bytes
and the high byte is at the lower address, the desired value must be shifted by
4 bits since it is offset starting at bit 4 (i.e. WAKEUP_THRESHOLD =
(WUTH[11:4] | WUTH[3:0]) >> 4).

Register Name Address Value

WAKEUP_THRESHOLD 0x6A 0x08

WAKEUP_THRESHOLD 0x6B 0x00

f) Write 0x30 to Interrupt Control Register 1 (INT_CTRL_REG1) to configure the

hardware interrupt. For this example, we will enable the physical interrupt pin
7 [IEN[5]=1], set the polarity to active high [IEA[4]=1], and latch until it is
cleared by reading INT_REL (0x1A) [IEL[3]=0].

Register Name Address Value

INT_CTRL_REG1 0x1E 0x30

g) Write 0xC2 to Control Register 1 (CNTRL_REG1) to assert PC1 (Power

Control bit), set the G-range to ±2g, set the resolution to 12 bits, and enable
the wake-up function.

Register Name Address Value

CTRL_REG1 0x1B 0xC2

h) Changes to wakeup state will now be reflected in bit 4 of STATUS_REG (INT

bit), bit 1 of INT_SRC_REG1 (WUFS bit), and also on the physical interrupt
pin. Additionally, the axis and direction of the detected motion is reflected in
INT_SOURCE2 register.

AN065

© Kionix 2017 All Rights Reserved

10 November 2017

Page 5 of 8

Timing Requirements

 There are several timing requirements that developers should keep in mind when

working with the KXTJ3.

 I²C Clock - The I²C Clock can support Fast Mode up to 400 KHz and High Speed mode

up to 3.4 MHz.

Interrupt Configuration

Physical Interrupt

There is one (1) available physical interrupt. It has FOUR (4) possible configurations
(excluding enable/disable), based on two (2) states for polarity and two (2) states for
latched/pulsed configuration for the Interrupt Pin Control Register 1 (INT_CTRL_REG1):

Enable/Disable (IEN[5])

• 0 – Disabled – Interrupt conditions will not be reflected on the physical interrupt pin.

• 1 – Enabled – Interrupt conditions will be reflected on the physical interrupt pin.

Polarity (IEA[4])

• 0 – Active Low – The interrupt pin will normally be HIGH, but will transition to LOW
when an interrupt is triggered.

• 1 – Active High – The interrupt pin will normally be LOW, but will transition to HIGH
when an interrupt is triggered.

Latched/Pulsed (IEL2[3])

• 0 – Latched mode – When an interrupt is triggered, it will remain active on the pin
until cleared by reading INT_REL.

• 1 – Pulse mode – When an interrupt is triggered, it will cause a short (~0.03-0.05ms)
pulse on the pin and clear itself.

Motion Detection

There is also an additional (1) interrupt control register (INT_CTRL_REG2) which controls
which axis and direction of the detected motion can cause an interrupt.

XNWU[5] – x negative (x-): 0 = disabled, 1 = enabled
XPWU[4] – x positive (x-): 0 = disabled, 1 = enabled
YNWU[3] – y negative (x-): 0 = disabled, 1 = enabled
YPWU[2] – y positive (x-): 0 = disabled, 1 = enabled
ZNWU[1] – z negative (x-): 0 = disabled, 1 = enabled
ZPWU[0] – z positive (x-): 0 = disabled, 1 = enabled

AN065

© Kionix 2017 All Rights Reserved

10 November 2017

Page 6 of 8

Interrupts

CTRL_REG1 controls both interrupts (DRDYE and WUFE) on the KXTJ3. These bits are
used to enable/disable the respective interrupt.

DRDYE[5] – Enables/Disables new acceleration data as interrupt
WUFE[1] – Enables/Disables the Wake-Up (motion detect) function

[By Default: All interrupts are not enabled]

• 0 – Disabled – Associated interrupt is disabled

• 1 – Enabled – Associated interrupt is enabled

A Few Interrupt Tips

Read the Interrupt Release Register to Clear

In latched mode, the INT1_REL registers must be read in order to clear the
physical interrupt pin. This will also clear the Interrupt Source Registers and the
particular INT bit in the Interrupt Source Register.

Microcontroller/GPIO Interrupt Handling

GPIO configuration is based solely on the connected hardware. The KXTJ3 can
be configured to issue interrupts depending on how the GPIO is programmed to
catch them (if this is not the case, please contact your Kionix Sales
Representative). Generally, when an interrupt is triggered, the developer should
take the following steps:

1. Disable GPIO interrupt
2. Clear GPIO interrupt and generate desired functionality
3. Enable GPIO interrupt

These steps should be taken without calling any digital communication
transactions if done in an interrupt context, because the operating system or kernel
will not allow busy-waiting on an I/O operation during an interrupt service routine.

Interrupt Polling

If physical interrupts are not used, a polling mechanism can be devised, which
checks the INT bit in SOURCE_REG register. If reading acceleration data, the
status bit is also cleared if data is read from the respective output registers. If using
WUF, this mechanism should then look at INT_SOURCE2 to determine which
direction caused the interrupt and what steps should be taken before clearing the
interrupt source information by reading the INT_ REL register.

AN065

© Kionix 2017 All Rights Reserved

10 November 2017

Page 7 of 8

Wake-up Function Tips

The Wake Up Function generates an interrupt when the part transitions from an inactive
to an active state, as determined by the WUF_TIMER and WUF_THRESHOLD register
values. If the interrupt is configured in unlatched mode (ULMODE[7]=1 in
INT_CTRL_REG2), it will be de-asserted when the non-activity time required has expired
before another wake-up interrupt can be set (NA_COUNTER).

Axis Masking

It is possible to mask all wake-up events including the direction which occur on a particular
axis (or axes). This is done with the 6 bits: XNWUE, XPWUE, YNWUE, YPWUE ZNWUE,
and ZPWUE in Interrupt Control Register 1.

XNWU - x negative (x-): 0 = disabled, 1 = enabled
XPWU - x positive (x+): 0 = disabled, 1 = enabled
YNWU - y negative (y-): 0 = disabled, 1 = enabled
YPWU - y positive (y+): 0 = disabled, 1 = enabled
ZNWU - z negative (z-): 0 = disabled, 1 = enabled
ZPWU - z positive (z+): 0 = disabled, 1 = enabled

Timers and Thresholds

WUF (Wake Up Function) Timer

- This timer establishes the number of ODR cycles that the acceleration on an
unmasked axis must be above the WUF threshold before a wake up interrupt is
triggered. Each count in this register equals one Motion Detection ODR cycle, as
dictated by the OWUFA, OWUFB and OWUFC bits in CTRL_REG2.

WUF (Wake Up Function) Threshold

- This threshold determines how much acceleration is required in an un-masked axis in

order to trigger a wake up interrupt that causes the part to transition from inactivity to
activity.

Troubleshooting

All Interrupt Issues

- Make sure the KXTJ3 is enabled and configured to issue interrupt signals in the
way that your GPIO is programmed to handle them (INT_CTRL_REG1).

- An oscilloscope on the physical interrupt pin can be a valuable tool to confirm
physical interrupt operation.

- Double check the appropriate interrupts are enabled in the CTRL_REG1 register

Accelerometer Data Ready Interrupt Not Working

- Make sure that the Accelerometer Data Ready interrupt is enabled (DRDYE) in the

Control Register 1 (CTRL_REG1).

AN065

© Kionix 2017 All Rights Reserved

10 November 2017

Page 8 of 8

- Ensure the interrupt is not latched by reading the INT_REL register
- Make sure that the physical interrupt signal is enabled (INT_CTRL_REG1)

Wake-Up Interrupt Not Working

- Make sure that the Wake-Up interrupt is enabled (WUFE) in the Control Register

1 (CTRL_REG1).
- Ensure the interrupt is not latched by reading the INT_REL register
- Make sure that the physical interrupt signal is enabled (INT_CTRL_REG1)

The Kionix Advantage

Kionix technology provides for X, Y, and Z-axis sensing on a single, silicon chip. One
accelerometer can be used to enable a variety of simultaneous features including, but not
limited to:

Hard Disk Drive protection
Vibration analysis
Tilt screen navigation
Sports modeling
Theft, man-down, accident alarm
Image stability, screen orientation & scrolling
Computer pointer
Navigation, mapping
Game playing
Automatic sleep mode

Theory of Operation

Kionix MEMS linear tri-axis accelerometers function on the principle of differential capacitance.
Acceleration causes displacement of a silicon structure resulting in a change in capacitance. A
signal-conditioning CMOS technology ASIC detects and transforms changes in capacitance into
an analog output voltage, which is proportional to acceleration. These outputs can then be sent
to a micro-controller for integration into various applications.

For product summaries, specifications, and schematics, please refer to the Kionix MEMS
accelerometer product sheets at http://www.kionix.com/parametric/Accelerometers.

http://www.kionix.com/parametric/Accelerometers

	Introduction
	Circuit Schematic
	Quick Start Implementation
	1. Asynchronous Read Back Acceleration Data
	2. Synchronous Hardware Interrupt Read Back Acceleration Data
	3. Activate Wake-Up Function

	Timing Requirements
	A Few Interrupt Tips
	Read the Interrupt Release Register to Clear
	Microcontroller/GPIO Interrupt Handling
	Interrupt Polling

	Wake-up Function Tips
	Axis Masking

	Timers and Thresholds
	WUF (Wake Up Function) Timer
	WUF (Wake Up Function) Threshold

	Troubleshooting
	All Interrupt Issues
	Accelerometer Data Ready Interrupt Not Working
	Wake-Up Interrupt Not Working

	The Kionix Advantage
	Theory of Operation

